Symmetry and Even/Odd Functions

There are three different types of graph symmetry:

y-axis symmetry EVEN function

origin symmetry
ODD function

x-axis symmetry but NEITHER even nor odd

- A function is **even** if the function is symmetric about the y-axis; this means f(-x) = f(x)
- A function is **odd** if the function is symmetric about the origin; this means f(-x) = -f(x)
- To find out whether the function is even or odd, substitute "-x" for "x" and simplify the function.
 - If it is the SAME as the original, it is even.
 - o If it is the OPPOSITE of the original, it is odd

Decide, algebraically, if the following functions are even, odd or neither:

b)
$$h(x) = x^{5} + 1$$

 $y = (-x)^{5} + 1$
 $= -x^{5} + 1$
 $NE17HER$

c)
$$g(x) = |x| - 2$$

 $|x| - 2$
 $= |x| - 2$
 $= |x| - 2$

d)
$$g(x) = x^3 - x$$

$$y = -x^3 - x$$

$$= -x^3 + x = -g(x)$$

$$0dd$$